
Sci.Int.(Lahore),29(5),1075-1081,2017  ISSN 1013-5316;CODEN: SINTE 8 1075 

September-October 

APPLICATION OF THE DOWNHILL SIMPLEX ALGORITHM FOR SOLVING 
AGGREGATE PRODUCTION PLANNING PROBLEMS 

Abdul Jabbar K. Bakheet 
2
, Bayda Atiya kalaf 

1,4,*
, Batool Atiya 

3 

1 University Putra Malaysia, Faculty of science, Department of Mathematics 
2 University of Baghdad, Faculty of Administration and Economics, Department of Statistic 

3 University of Baghdad, Faculty of Administration and Economics, Department of Industrial Management 
4University of Baghdad, Faculty of Education for Pure Science /Ibn AL-Haytham, Department of Mathematics 

* Corresponding addresses: hbama75@yahoo.com 

ABSTRACT: Simplex downhill algorithm (SDA) is a direct search method that uses geometric relationships to aid in finding 

approximate solutions to complex and NP-hard optimization problems. Due to aggregate production planning belongs to the 

class of NP-hard problems in production planning, in this study employs SDA for solving multi-objective linear programming 

model for aggregate production planning problems. The proposed model minimizes total production and work-force costs 

simultaneously. This study is the first attempt to solve an APP problem by using SDA. The experimental results demonstrate 

that the SDA was efficient and faster than genetic algorithm (GA). 
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1 INTRODUCTION 

Aggregate production planning (APP) is an operational plan 

for a production process in advance of 3 to 18 months. In the 

field of operations planning, APP falls between the broad 

decisions of long-range planning and the highly specific and 

detailed short range planning decisions of production and 

operations management. Relevant planning forms that 

involve a master production schedule, material requirement 

planning, and capacity requirement planning depend on APP 

decisions in a hierarchical way [1- 3]. 

Numerous APP models and solutions with various degree of 

sophistication have been introduced since early 1950. 

According to [4], all traditional approaches of APP problems 

may be classified into six categories as follows: linear 

programming (LP) [5], linear decision rule (LDR)[6], 

transportation method [7],  management coefficient approach 

[8], search decision rule [9], simulation [10]. 

However, considering all practical parameters in an APP 

model makes the model difficult and non-optimally solvable. 

In recent decades, depending on more as assumptions made 

and advanced modeling approaches invented, the APP 

problem has become quite complex and large scale. There is 

a trend in the research community to solve the large complex 

problems by using meta-heuristic optimization techniques. 

This is mainly due to the time-consuming and unsuitability of 

classical techniques in many circumstances. Meta-heuristic 

algorithms, such as tabu search (TS)[11], genetic algorithm 

(GA) [12], simulated annealing algorithm (SA)[13], harmony 

search algorithm (HS) [14], and particle swarm optimization 

algorithm (PSO) [15], have been developed to solve APP. 

[16] proposed (FAIHSA) mechanisms on an improved HSA 

to solve a multi-objective APP problem. Esmaeil and Amir 

[17] introduced HSA to solve two mixed-integer linear 

programming models for APP system with return products 

and machine breakdowns. Ramazanian et al.[18] 

reformulated a multi-objective non-linear programming 

model to single objective, in which PSO algorithm is used to 

solve the model. [19] modified PSOA for integer linear 

programming to APP, and a modified operation procedure of 

particles to the modernization rules was employed to govern 

the search processes for a particle swarm. Rakibul et al. [20] 

applied PSO for constrained optimization of APP under 

vague demand. 

In 2001 [21] extended Masud’s model (1980) [22] by 

including subcontracting and setup decisions and considered 

multiple-objective tabu search algorithm which was proposed 

by [23] and [24]. Likewise, Kumar and Haq adopted the 

genetic algorithm (GA), ant colony algorithm (AGA), and 

hybrid genetic-ant colony algorithm (HGA) to solve an APP 

problem. Based on the results that were obtained, GA and 

HGA displayed relatively good performance [25]. 

Although SDA is a heuristic direct-search method [26] and 

still a method of choice for many practitioners in the fields of 

statistics, engineering, and the physical and medical sciences 

because it is easy to code and very easy to use [27], until now 

SDA has not been applied for solving APP problems. 

In this paper, SDA was introduced at the first tie to solve a 

multi-objective linear programming model for APP problems. 

The rest of the paper is organized as follows. Section 2 

describes the simplex downhill algorithm. Section 3 presents 

the mathematical model. Section 4 introduces the solution 

procedure. Numerical results and discussion are presented in 

Section 5. Section 6 concludes the paper. 

2 Simplex Downhill Algorithm 

Simplex downhill algorithm (SDA) is a mathematical method 

that uses geometric relationships to aid in finding 

approximate solutions to solve complex problems and applies 

a simplex structure to attain the optimization function. The 

basis of SDA was introduced in 1962 [28], but Nelder and 

Mead [29] adopted and modified this algorithm in 1965 to 

modern form. which is also called Nelder-Mead or Amoeba. 

The bene t of this method is it does not require an evaluation 

of the derivative of the function. but only guesses number of 

solutions for each decision variable. 

The concept simplex in SDA is quite different from Dantzigs 

simplex method for linear programming. Simplex is a simple 

geometric shape de ned by the convex hull of N + 1 vertices 

in N-dimensional space. 

In 2 dimensions, a simplex represents a triangle, while in 3 

dimensions it represents a tetrahedron as we show in figure 1. 

  



1076  ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(5),1075-1081,2017 

September-October 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Geometric shapes of simplex downhill algorithm 

 

 
 

 

Figure 2:Reflection step 

 

The idea of SDA generates a sequence of simplice which 

converges to minimize. That means we generate N + 1 points 

(vertex) in an N-dimensional space. then the vertices sorted 

by ascending order such us: f(x1) ≤ f(x2) ≤ … ≤ f(xn) ≤ f(xn+1), 

where xn+1 is worse point (solution) and x1 best 

point(solution). The objective function value is determined at 

each of these points. The algorithm iteration updates the 

worst point by four operations: reflection, expansion, 

contraction, and shrinkage. And we will explain details for 

each operation: 

 Reflection: 

compute the reflection point xr from xr = m + λ (m-xn+1) and 

evaluate f for xr, where m is the centroid of the N best points 

in the vertices of the simplex; 

 m = mean ( x (1 : n)) and λ = 1. 

If f(x1) ≤ f(xr) < f(xn), then replace the worst point with a 

reflected point xn+1 = xr. As we shown in Fig.2. 

 

 

 

 

 

 

 

Figure 3: Expansion step 

 

Expansion: 
 If f(xr) < f(x1) then generate a new point xe by expansion, 

from  
xe = xr + β (xr - m), where β = 2. 

 

- If f(xe) < f(xr) then replace xn+1 with xe. 

- else   xn+1 = xr.  Figure 3 illustrate expansion step. 
Contraction:  
We have two kind of contraction, outside contraction and 

inside contraction. 

Outside Contraction: If f(xn) ≤ f(xr) < f(xn+1), then generate 

a new point xc by contraction, from xc = m+ γ (xr - m) and γ = 

0.5. 

 If f(xc) < f(xr), then replace xn+1 with xc.  

 else xn+1 = xr . 

- Inside contraction: If f(xn+1) ≤ f(xr), generate a new 

point xc by xc = m + γ (m - xn+1). 

 If f(xc) < f(xr) then xn+1 = xc.  

 else xn+1 = xr. 

 

As we shown in Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4:Outside and Inside Contraction step 

 

If the three steps in above are fails, then a shrinkage step is 

used. 

 Shrinkage Step: 

If the three operations in above are fails then shrinkage step is 

used shrinkage start with calculate the n new vertices, and 

just keep the best one x1  and 
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xsj = x1 + σ (xsj - x1),  j = {2 … n +1} and σ = 0.5. The 

(unordered) vertices of the simplex at the next iteration 

consist of x1, xs2, …, xs n+1. we can see this step in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Shrinkage Step 

5 
3 Problem formulation 

The mathematical model of multi-objective linear 

programming for aggregate production planning is proposed, 

and describe descried below. Assume that a company 

produced N types of products to fulfill market demand over 

the planning horizon T. The objectives of this APP decision 

are to minimize total production costs and workforce costs. 

3.1 Notation 

n :    number of products, n = 1,2,…, N . 

t :     number of periods in the planning horizon, t = 1,2,…, T 

.cnt :   production cost per ton of product n per period t, (dolar 

/ton). 

int :   inventory carrying cost per ton of product n per period t, 

(dolar/ton). 

ht :   hiring cost per worker in period t, (dolar, worker). 

ft  :   firing cost per worker in period t, ( dolar, worker). 

ot  :   cost per man- hour of overtime labor per period t. 

wt :   cost of regular labor per period t. 

Dnt :  forecasted demand for product n per period t, (tons). 

Hmax :  Maximum hiring in each period. 

Fmax:  Maximum firing in each period. 

Mn :  hours required to produce one ton of product n. 

AR :  working regular hours per period t. 

AO working overtime hours, which allowed during per period 

t. 

Kn : hours required to produce one ton for product n per 

workers. 

Pnt :  production of product n per period t, (tons). 

Int :  inventory level of product  n  per period t, (tons). 

Ot : man-hours of overtime labor per period t. 

Wt: workforce level per period t, (workers). 

Ht : hired workers per period t, (workers). 

Ft :   fired workers per period t, (workers). 

Objective function: 

 Minimize production costs. 
Min Z1=∑ ∑     

 
   

  
                                 (1) 

 Minimize workforce costs.  

Min Z2=    ∑                    
 
            (2) 

 Constraint  

 inventory level constraint: 
Pnt+ In(t-1)- Int= Dnt                                                     n ,    t                                  
 Workforce level constraints:                                   
Ft - Ht+ Wt – Wt-1 = 0                                t          
Ft ≤ Fmax                            
       Ht ≤ Hmax 

 Overtime constraint: 
Ot – AO * Wt ≤ 0                    t                                                     

 Production constraint  
∑    
   n Pnt – AR * W t – Ot  ≤ 0                       t                            

 non-negativity constraint 
Pnt ,Int , Ht  , Ft  ,Wt, Ot  ≥ 0  

4 Solution approach 

This study proposes simplex downhill algorithm to use multi-

objective linear programming model for APP problems. 

The SDA procedure can be summarized as follows: 

Step 1:    n = number of parameters (decision variables) 

required for output; 

 let X is a vector for all decision variables such as  

X = [Pnt Int Ht Ft Wt Ot] and generate n+1 solutions for X. 

Step 2:    Find the objective function for each Xi, i = 1 …, n + 

1, 

 Sort the result of f(xi) such that f(x1) ≤ f(x2) ≤ … ≤ f(xn) ≤ 

f(xn+1). 

Step 3:    Generate a trial point xr by reflection, 

If f(x1) ≤ f(xr) < f(xn), then xn+1 = xr and go to step 5. 

else If f(xr) < f(x1) then generate a new point xe by expansion, 

If f(xe) < f(xr) then xn+1 = xe and go to step 5. 

else replace xn+1 with xr and go to step 5. 

else f(xn)   ≤  f(xr), generate a new point xc by contraction, 

If f(xc)  < f(xr), then replace xn+1 with xc. go to step 5. 

Step 4:   shrinkage step. calculate the n new vertices, and just 

keep the best one x1,  xj = x1 + σ (xj - x1); j=1, …, n. 

Step 5:   stopping step: if | f (xn+1 - f(x1) | / f (xn+1 < e
-6

 ) then 

end else go to step 2. 

In addition, SD algorithm depicting in Fig. 6 
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Figure 6: Flowchart for SDA procedure 

5 Computational study 

5.1 case study 

The proposed model is applied in the General Company for 

Vegetable Oils. This company of the most important 

companies in the Arab world to vegetable oils industry. It 

produces ten types of products. We represented for each 

product by letter, A=solid detergent, B= liquid detergent, C = 

fat solid, D= liquid oil, E = toilet soap, F =liquid soap, 

G=detergent bleach, H =shaving cream, J =shampoo, and K = 

toothpaste. The time horizon of APP decision six months. 

The production costs, inventory costs forecast demand for 

each product were summarized in tables 1 3 respectively. The 

initial inventory for solid detergent is105 tons, toilet soap 

is333 tons, shaving cream is 0:25 tons and shampoo is 1:8 

tons. The initial worker level is 3313 workers. The costs of 

regular worker per month is 500 dollar /man, the hours 

worked in the in one month is 140 hours. 5:357 is overtime 

costs per worker in hour. The costs associated with hiring and 

ring are 774:910 and 581:182 per worker, respectively. Hours 

of overtime, which allowed during the period is 60 hours per 

period t. hours of regular worker per period is140 hours. 

 

Table 1:Production and inventory costs in dollar 

 A B C  D  E  F  G 

       
cnt 3285  385.082 450.7 1005.776 800.834 486.999 449.419 
int 38 47 53.6  35.511 35.415 24.6  37.75 

 Table 2:  Hours required to produce one ton of product 

 Product A B C D E F G H J K 

            

 Hours 92 525 69 64 50 121 42 607 172 692 

            

 

  



Sci.Int.(Lahore),29(5),1075-1081,2017  ISSN 1013-5316;CODEN: SINTE 8 1079 

September-October 

Table 3:Forecast demand for all products 

Period A B C D E F G  H J K 

            

1 3049.1 539 340.6 100 606.4 23.1 1.7  1.2 3.1 0/74 

2 1664.1 509 708.1 152 482.7 265 3.3  2 1.8 1.1 

3 1236.4 35.4 700 138 496.8 14.8 7.4  1.7 2.3 0.47 

4 782.5 40.8 650 77 429.9 25 8.7  2.5 2.9 0.76 

5 914.4 275 439 56 324.7 15 215  2.4 2.1 2.3 

6 652.9 379 619.1 50 652.9 12.4 29.1  1.3 2.7 0.71 

            

 

5.2 Evaluation of the SDA with Other Algorithms 

In order to evaluate the performance of the SD algorithm for 

the APP problem, we made use of that case study data. For 

better comparison, we considered three different algorithms; 

Genetic Algorithm (GA), harmony search (HS), and SD 

algorithm. The algorithms were Coded with Mat lab R2015a 

and were executed on a PC with an Intel Core i5 processor, 

4.00 GB RAM, and a 1.80 GHz CPU. 

To carry out the GA, we set some parameters for GA of the 

population size, the crossover rate, the mutation rate and the 

generations as 100, 0.9, 0.05 and 103 respectively. choosing 

the best algorithm for solving APP problems is not an easy 

task. 

Table 4 summered the results for algorithms SDA and GA. 

This table indicated that, SDA provided better results 

(7111902 and 577053) than GA (7560276 6790206) for each 

objective function. In addition, Therefore, the results of GA 

were quite satisfactory thought it exhibit longer runtime (33) 

compared with SDA (12). Therefore, SDA can solve APP 

problems through an interactive decision-making process. 

Furthermore, objective function value and run time for SDA 

best than GA as shown in table 4. Thus, SDA was adopted in 

the implementation of the model in the company. Tables 5 to 

7 present the solutionsfor each decision variable for a multi-

objectives linear programming to APP problem. Finally, we 

conclude that the SDA provided better results for APP 

decision problems in terms of cost and time than GA. 
 

Table 4:Results for each algorithm 

 

algorithm Z1 Z2 time 

    

SDA 7111902 577053 12 s. 

GA 7560278 6790206 33 s. 

    

 

 

  Table 5: Production yield   

product P1 P2 P3 P4 P5 P6 

       

A 2944.82 1664.1 1236.4 782.5 914.4 652.9 

B 53.9 50.9 35.4 40.8 27.5 37.9 

C 341.6 708.02 700 650.2 439 619.02 

D 100 152 138 77 56 50 

E 144.071 482.7 496.8 429.9 324.7 652.9 

F 23.101 26.501 14.801 25 14.7563 13.1611 

G 1.0934 2 1.7 2.5 3.2532 0.49984 

H 29.1 0.7477 2 1.7 2.5 2.4 

J 3.2686 1.8 2.3 2.9 2.1 2.7 

K 0.74143 1.10543 0.470777 0.6852 2.600935 0.128868 

       

 

  Table 6: Inventory levels   

product P1 P2 P3 P4 P5 P6 

A 0 0 0 0 0 0 

B 0 0 0 0 0 0 

C 0 0 0 0 0 0 

D 0 0 0 0 0 0 

E 0.1612 0.1612 0.1612 0.1612 0.1612 0.1612 

F 0 0 0 0 0.2308 0 

G 0 0 0 0 0 0 

H 0.1434 0.1434 0.1434 0.1434 0.1946 0.1263 

J 1.9686 1.9686 1.9686 1.9686 1.9686 1.9686 

K 0.004 0 0 0 0.5142 0 

       

 



1080  ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(5),1075-1081,2017 

September-October 

Table 4:Results for each algorithm 

 

product P1 P2 P3 P4 P5 P6 

       

Wt 1915 1682 1453 1147 1041 1042 

Ht 0 0 0 0 0 1 

Ft 1400 233 229 306 106 0 

Ot 4.2337 8.6316 0 0 0 0 

 

6 CONCLUSION 

SDA performs without partial derivatives for each 

independent variable of the function, robust, easy to be 

programmed and fast. Therefore, in this study presented a 

SDA for solving multi-objective linear programming model 

of APP problems for the first time. The proposed model 

attempt to minimizes the total production and workforce 

costs. The model was applied to solve the APP problem of 

the General Company for Vegetable Oils. The proposed 

algorithmwas also compared with GA. The results showed 

that the SDA is competitive and can provide an efficient 

solution within a short time. 
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